246 research outputs found

    High-mass star formation in southern disk galaxies

    Get PDF
    As part of a major study of the physical processes of star formation and the evolution of galactic discs, the detailed distribution of high-mass star formation within southern late-type spirals and Magellanic-type galaxies is being measured by means of narrow-band imaging in Ha and the continuum, spectroscopic studies of prominent HII regions identified in the Ha images, and by radio mapping in neutral hydrogen and the continuum. The radio mapping will be undertaken with the Southern Hemisphere's first large, multi-frequency synthesis array, the Australia Telescope. Some optical imaging and spectroscopic data has already been acquired; the optical data and some preliminary results are described

    Resolving the electron temperature discrepancies in HII Regions and Planetary Nebulae: kappa-distributed electrons

    Get PDF
    The measurement of electron temperatures and metallicities in H ii regions and Planetary Nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What it worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H ii regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a "kappa-distribution" for the electron energies. Such distributions are widely found in Solar System plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H ii regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from Hii regions and PNe it appears that kappa ~ 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.Comment: 16 pages, 11 figures, 2 tables, published in Ap

    Radio-Excess IRAS Galaxies: IV. Optical Spectroscopy

    Get PDF
    This is the fourth in our series of papers investigating radio-excess galaxies, which have radio emission associated with an active nucleus but which do not fit into the traditional categories of either radio-loud or radio-quiet active galaxies. In this paper, we present optical spectra of our sample of FIR-luminous radio-excess galaxies. Optical emission line diagnostics are used to determine the dominant source of the ionizing radiation. We find that radio excess is an excellent indicator of the presence of an active nucleus: the radio-excess sample contains a much higher fraction of AGN than samples selected on FIR luminosity alone, or using other criteria such as warm FIR colors. Several objects have ambiguous classifications and are likely to be composite objects with mixed excitation. The type of optical spectrum appears to be associated with the radio-loudness: radio-loud objects may be more `pure' AGN than radio-intermediate objects. We find strong evidence for interaction between the radio plasma and the surrounding gas. The jet energy fluxes of the radio-excess objects, inferred from the [O III] luminosities, are lower than in powerful radio sources, consistent with our previous results. We conclude that the jets of radio-intermediate sources are intrinsically weaker than those in sources with more powerful radio emission. A significant fraction of the sample spectra show post-starburst stellar continuum, with A-star absorption lines, consistent with the large fraction of merging or disturbed host galaxies in the sample. The ages of the radio sources are significantly less than those of A stars indicating that, if the radio sources are associated with merging activity, there is a delay between the interaction and the initiation of the radio activity. (Abridged.)Comment: Accepted for publication in AJ; version with high resolution figures available from http://www.cis.rit.edu/~clbsps/papers/paper4.pd
    corecore